sábado, 19 de febrero de 2011

evidencia de trabajo #11( teoria electronica)

La teoría electrónica
La historia de la electricidad tuvo su comienzo hace 2500 años, en lo que aparentemente sólo eran juegos recreativos de salón; nada de importancia le fue añadido hasta la era moderna. Ninguno de los griegos de aquella época (años 600 a. C. poco más o menos observaron que al filosofo Tales de Mileto atrayendo pajillas y papeles con una varilla de ámbar, que previamente había frotado con una tela pudo sospechar que la fuerza oculta existente en dicho sencillo experimento llegaría con el tiempo a ser la de mayor importancia para convertir al hombre en el dueño de la Tierra). Como el idioma griego la palabra ámbar es elektrón, no tuvo nada de extraño que para el físico ingles William Gilbert (1540-1603) le aplicara la palabra “eléctrica” a los materiales que se encontró que se comportaran de forma similar ala ámbar.
Su gran tratado De magnete publicado en el 1600, en el cual usó términos tan modernos como fuerza eléctrica y atracción eléctrica, le conquisto el título de “padre de la electricidad”.
Durante más o menos los cien años posteriores, el progreso fue muy limitado consistiendo mayormente en la observación de fenómenos magnéticos y eléctricos aislados. En el 1660, Otto Von Guericke observó la luz y el sonido de las chispas eléctricas que se producían con una rudimentaria máquina generadora de electricidad por fricción construida por el mismo.
Para entender la teoría electrónica debemos antes tener algún conocimiento de la estructura atómica de la materia.
Estructura atómica de la materia
Desde la época de los griegos, sé penso que toda la materia estaba compuesta por átomos (“átomo es la palabra griega para indivisible”) aunque la idea de aquellos sobre la naturaleza de las partículas “indivisibles” era bastante vaga. No fue hasta que el químico inglés John Dalton sugirió que toda materia podía ser descompuesta en sus componentes fundamentales o elementos, las partículas más pequeñas de los cuales llamo átomos. Hay en la actualidad 98 elementos conocidos, de los cuales 92 existen en la naturaleza y 6 son producidos artificialmente en los desintegradores atómicos. Puesto que hay 98 elementos tienen que haber 98 tipos de átomos. Por los que trabajos de los científicos Niels Bohr, Lord Rutherford y otros se han comprobado que los átomos tienen una estructura compleja, que se asemeja en algo a un sistema solar en miniatura.
El núcleo positivamente cargado revela a su vez una estructura también compleja, pero para comprender la electricidad resulta adecuada una visión extraordinariamente más simplificada. De acuerdo con este concepto simplificado, el núcleo esta constituido por 2 partículas fundamentales conocidas como el protón y el neutrón. El protón es una partícula relativamente mas pesada (1840 veces mas pesada que el electrón) (+) mientras el neutrón, con casi igual masa, no tiene carga alguna.
La carga positiva en cada protón es igual a la carga negativa de cada electrón. Puesto que los átomos por lo común son eléctricamente neutrales, el numero de cargas positivas es igual al de las negativas; Esto es, el número de protones en el núcleo es el igual al de los electrones que giran alrededor. Prácticamente todo el peso de átomo se debe a sus protones y neutrones pues el peso de los electrones orbitales que rodean al núcleo es insignificante en comparación.
Las órbitas de estos electrones están dispuestos en capas alrededor del núcleo y cada capa tiene una capacidad máxima de electrones siendo sucesivamente 2,8,18, y 32 electrones partiendo del núcleo y contando hacia el exterior, sin embargo la capa mas apartada del núcleo la mas exterior nunca contiene mas de 8 electrones. Es en esta órbita más exterior, la que determina la valencia química del átomo y sus principales características físicas.


Moléculas.- Mientras los átomos son porciones más pequeñas en materia en cada elemento, es bueno tener en mente que la mayoría de las materias que existen en el mundo están compuestas de varios elementos, formados por la combinación de átomos diferentes. Estas combinaciones de átomos se llaman moléculas.
Iones e ionización
Un ión es un átomo o molécula que esta eléctricamente desequilibrado por la perdida o adquisición de uno o más electrones. Si se adquiera electrones es un ión negativo y si lo ha perdido positivo.
Las fuerzas eléctricas entre iones de signo opuesto son las responsables del aspecto sólido y consistente que ofrece un cristal de cloruro de sodio. La composición iónica de una gota de limón hace de ella un conductor de la corriente eléctrica, siendo los iones presentes en la disolución los portadores de carga y energía eléctricas. Los procesos químicos en los cuales las sustancias reaccionantes ceden o captan electrones implican la formación de iones o su neutralización. El enlace iónico, la electrólisis y los procesos de oxidación-reducción son algunos de los fenómenos naturales en los que los iones desempeñan el papel principal.
¿QUÉ SON LOS IONES?
Un ion es un átomo o grupo de átomos cargado eléctricamente. Un ion positivo es un catión y un ion negativo es un anión.
La formación de los iones a partir de los átomos es, en esencia, un proceso de pérdida o ganancia de electrones.  Si un átomo de oxígeno gana dos electrones se convierte en el anión O2-:
Aun cuando los iones proceden de los átomos son, desde un punto de vista químico, muy diferentes de ellos. Así, la sustancia sodio metálico, compuesta por átomos de sodio Na, reacciona enérgicamente con el agua, mientras que el ion sodio Na+ no lo hace. Debido a las diferencias existentes en su configuración electrónica, átomos e iones suelen presentar diferencias notables en su capacidad para reaccionar químicamente con otras sustancias.
Electrones libres
Son los electrones que han sido desalojados de la capa exterior de un átomo se conocen como electrones libres. Pueden existir por si mismos en el exterior del átomo y son los causantes de los fenómenos eléctricos y electrónicos.
Conductores y aisladores.- Son los que poseen ciertos electrones libres capaces de pasar libremente de átomo a átomo. Los metales contienen gran cantidad de electrones libres capaces de producir corriente eléctrica que son los conductores. Los materiales no metálicos que contienen relativamente pocos electrones libres son denominados aisladores. Los materiales tienen cantidades intermedias de electrones libres disponibles son los semiconductores.
Corriente eléctrica.- Los electrones libres de los conductores están generalmente en un estado caótico moviéndose en todas direcciones posibles. Pero cuando la fuerza electromotriz (fem) como la que provee la batería se aplica atravez de un conductor, los electrones libres son guiados ordenadamente de átomo a átomo del terminal negativo de la batería al terminal positivo a lo largo de un conductor.
Este movimiento ordenado de electrones libres originado por la aplicación de una fuerza electromotriz (o voltaje) constituye la corriente eléctrica.
.Resistencia.- La corriente eléctrica es un flujo de electrones libres, los materiales que tienen un gran numero de electrones libres disponibles que permiten una mayor fuerza electromotriz aplicada especifica, de aquellos que solo tienen pocos electrones libres. La medida de la oposición al flujo de electrones libres en un material dado es la cantidad que se denominan resistividad. La resistencia al flujo de la corriente eléctrica de un material dado, con área y longitudes conocidas puede ser calculada en virtud de su resistividad.

La ley de las cargas.
Hoy en día sabemos que los fenómenos eléctricos son debidos a la existencia de cargas. Además sabemos que hay dos clases de cargas. Dos cargas de la misma clase se repelen y si son de diferente clase se atraen. Por eso, para diferenciarlas, a un tipo de carga  la llamamos positiva y al otro  negativa.
Carga por frotamiento
Cuando frotamos un cuerpo contra otro algunos electrones son arrancados de la capa de valencia pudiendo intercambiarse entre los cuerpos que se frotan y produciéndose un desequilibrio de cargas. El proceso se agudiza cuando uno de los materiales tiene cierta tendencia a captar electrones (captador) y el otro material a cederlos (dador), cargándose respectivamente negativa y positivamente cargados.
Carga por contacto
Cuando se pone en contacto un cuerpo cargado con otro que no lo está, las cargas del primero se reparten entre los dos. Esto sucede porque en el primer cuerpo las cargas están muy juntas, lo que equivale a decir que la fuerza electrostática - de repulsión, puesto que todas las cargas son del mismo signo- es muy grande. Una vez las cargas se han repartido entre los dos cuerpos, las fuerzas electrostáticas son más pequeñas.
Campo Eléctrico.
Definición de campo eléctrico.
Supongamos dos cargas eléctricas situadas a una determinada distancia. Aunque entre ellas no exista más que el vacío, estas cargas interactúan, atrayéndose o repeliéndose mutuamente. Las fuerzas eléctricas, al igual que la fuerza gravitatoria, son un tipo de interacción que actúa a distancia, sin que haya nada de mediador.
No existe ningún físico que sepa por qué esto es así. Solamente tenemos la evidencia experimental de que las cosas suceden de esa manera. Sin embargo, resulta muy útil pensar que una de las cargas confiere alguna propiedad en el espacio que la rodea que se traduce en una repulsión o atracción sobre la otra carga. Si esto es así, incluso cuando la otra carga no esté allí, el lugar que ocuparía continúa manteniendo esta, digamos, "anomalía".
Decimos entonces que una carga genera un campo eléctrico E sobre cada punto del espacio circundante. De hecho, cualquier campo eléctrico se extiende teóricamente hasta el infinito, pero cuanto más lejos están los puntos de la carga, más pequeño resulta el valor del campo, y en el infinito este vale exactamente cero. De todos modos, en la práctica, a una distancia relativamente corta, el campo es ya tan pequeño que podemos aproximarlo a cero. Recuerda por ejemplo, que para atraer papelitos con una regla electrizada es necesaria acercársela a éstos. Se define el vector intensidad de campo eléctrico;
como: E = F/q y su unidad en el sistema internacional es de Newton/Coulombio [N/C]
Líneas de fuerza.
Un campo eléctrico puede representarse figurativamente por líneas de fuerza. Se traza una línea de fuerza de modo que en cada punto la dirección del campo es tangente a la línea que pasa por el punto. Las líneas de fuerza se trazan de modo que su densidad sea proporcional a la intensidad del campo.

No hay comentarios:

Publicar un comentario